\qquad

Abby bakes 23 cookies. She shares them equally with 4 friends. How many cookies does each person get. (Abby gets cookies too) How many cookies are left over?

Week 6 Day 2

Skip county by 2, 3, 4, 5, and 6.

Case has the beads below. 4/8 (four eighths) of the beads are green. The rest are red. Color the beads below to match.

Create and label a tape diagram to solve.

$$
3 \times 5=15
$$

\qquad
Divide the array to demonstrate the distributive property of multiplication and solve.
$3 \times 8=$
$(3 \times 5)+(3 \times 3)=$ \qquad $+$ \qquad $=$ \qquad

Draw lines to match each number with its name.	Write the number in expanded form.	Complete the input-output box.	
$7 \times 8=56$	6,657	Rule $\div 3$	
		Input	Output
			3
factor product factor			4
			5

Jayden has 24 wrestling action figures. He places them equally into 6 cases. How many action figures

Week 6 Day 4
Use a tape diagram to solve the previous problem. does he place in each case? Fill in the table with what is known. Use the letter n for the unknown.

\# of groups	
size of groups	
total	

Divide the number line into 4 equal parts. Divide each part into 4 equal sections.

Name:

Stephanie buys new display cases for her rock collection. Each case can hold 4 rocks. She has 38 rocks. How many cases does she need to buy?	Solve.	Week 6 Day 5
	$\begin{array}{r} \$ 34.67 \\ +\$ 3.24 \\ \hline \end{array}$	$\begin{gathered} \$ 6.45 \\ -\$.62 \end{gathered}$

Circle $3 / 10$ of the dimes below. How much money is circled?	Write the missing factors for 24.	Find the products. The product of.....
	$1 \times \ldots=24$	

Fill in the blanks.
Ken saw \qquad shooting stars. Jill saw \qquad shooting stars.

Jacks saw \qquad more shooting stars than Mary.
\qquad shooting stars were seen in all.
Jack

$$
\Sigma=\text { two shooting stars }
$$

